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This talk presents an overview of the multiphase flow efforts with Hydra-TH. The 
presentation begins with a definition of the requirements and design principles 
for multiphase flow relevant to CASL-centric problems.  A brief survey of existing 
codes and their solution algorithms is presented before turning the model 
formulation selected for Hydra-TH.  The issues of hyperbolicity and well-
posedness are outlined, and a three candidate solution algorithms are discussed.  
The development status of Hydra-TH for multiphase flow is then presented with a 
brief summary and discussion of future directions for this work. 
 
 



•  Survey of Codes & Solution Algorithms 
•  Hydra-TH Model Formulation 

•  Candidate Hydra-TH Solution Algorithms 

•  Hydra-TH Status 

•  Requirements & Design Principles 

•  Summary & Future Directions 



•  (Discrete) mass, momentum, and energy conservation  
•  Ability to cover all-speeds (from nearly-incompressible to fully-compressible) 

•  Ability to deal with numerically stiff fluid (water) equation of state 

•  Robust treatment of phase appearance and disappearance 

•  For [1-fluid, ρ=const, operator-splitting] option, should reduce to the original HYDRA  
algorithm (proven to be robust/accurate/efficient) 

•  Multi-(N)-fluid (user-specified) formulation  

•  Ability to deal with boiling/condensation (tight coupling with energy equation) 

•  Solvability: hyperbolicity/well-posedness 
•  Efficient for large-scale unstructured-mesh HPC applications (scalable) 
•  Can be tightly coupled with Next-Generation System Analysis codes 



•  Codes Surveyed: NPHASE, NEPTUNE, CATHARE, StarCD & CCM+, 
Fluent, CFX, MFIX, CFDLib, TRAC, TRACE, RELAP5, RETRAN, … 
–  Documented in “Effective-Field Modeling for Multi-Fluid Flows” working notes 

•  Basic formulations are similar  in terms of ensemble averaged 
conservation equations, degrees-of-freedom, and closures 
–  Volume fractions, multiple velocities, multiple energy eq.’s, etc. 
–  Virtually all are using a single-pressure approximation 

•  Approaches to hyperbolize equations  
–  Bulk pressure difference, interface dynamic pressure, added mass 
–  7 equation-model of Saurel, Berry, et al. preserves hyperbolicity -- invisicid 

•  Solution algorithms 
–  Virtually all are pressure-based 
–  Many are based on SIMPLE (aka Uzawa iteration) 

•  Expect slow convergence rates (ex: many 100’s of iterations for small problems) 
•  NPHASE combines SIMPLE-like outer iteration with coupled mass-momentum solve 

–  All current work-horse T-H codes (RELAP5, TRAC, TRACE, CATHARE, 
RETRAN) use operator-split algorithms 



•  Mechanical & thermal non-equilibrium 
•  Pressure equilibrium 

•  Hyperbolic (easily provable when N=2 fields) 
•  Multiple-bulk-pressure 

•  [ILES, LES/DES, k-ε and k-ω models in the future] 
•  [Interfacial area transport (IAT) in the future (from NPHASE/NEPTUNE)] 

•  Can implement both acoustically-filtered and fully-compressible forms 

•  Multiphase closures: from NPHASE methods, Lahey, Podowski, et al. 
•  EOS: generic; for water – IAPWS-IF97 Standard 

1. Subcooled boiling 
2. Departure from nucleate boiling (DNB) 

3. Loss-of-coolant accidents (LOCA) 
4. Reflooding 

In the future 



 

+  Compatibility condition, 
+  Bulk pressure difference models, 

+  N equations of state, 

 Turbulence  
equations 

 

+  Constitutive physics (for terms in boxes        ) 





(Bernoulli effect, [Stuhmiller, 1977]) 

[Bestion, 1990] 

 



(e.g., surface tension) 
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Start Newton iteration 
Linear solve: 

End Newton iteration 

IF ELSE 



•  Prototype multiphase physics is in place 
•  Running simple problems and solving N-momentum 

equations w. single pressure 
•  Volume fractions treated as passive scalars for now 
•  All keywords, BC’s, IC’s inherited from the  

virtual incompressible physics 
 

•  General development plan 
•  Re-use all existing BC’s, IC’s, materials, transport 

solvers, and turbulence statistics on a phasic basis 
•  Implement both segregated and  

fully-coupled solution algorithms 
•  Segregated solvers will provide the  

physics-based preconditioning 
•  Preserve existing ALE methods 

for FSI 



•  The basic formulation is relatively well defined at this point 
•  Some questions remain on multiphase closures, e.g.,  the form of 

lift forces, mass exchange terms, etc. 
Ø  May require some additional research to adequately define 

source terms 
•  A number of questions/algorithmic decisions will be answered 

over the next 3-4 months 

•  Prototype multiphase virtual physics is in place 
•  Able to solve multiple momentum equations with identical BC’s 

and obtain correct solutions 
•  Volume fraction transport (i.e., continuity) is in place 
•  Extension for multiple energy equations appears straightforward 
•  Additional effort required to integrate steam tables, additional 

constitutive and EOS models 

•  On-track for L3:THM.CFD.P5.06 milestone 
•  Initial two-phase laminar test case to be based on DEBORA 

experiments is targeted – time permitting 



~ Backup Slides ~ 



NPHASE Solution Algorithm 
a few general notes 
•  2 approaches :  segregated or coupled mass/momentum 
•  Coupled mass/momentum approach preferred approach 

•  Better stability and robustness 
•  User routines for closure terms (drag force, lift interfacial 

force, wall interfacial force, turbulence dispersion interfacial 
force) 

•  Closure terms treated differently in segregated and coupled 
solver 

•  Segregated algorithm: linearized drag force, other 
terms, other terms added as RHS terms held constant 
during iterations.  

•  Coupled algorithm: linearized terms added to LHS and 
full model term added to RHS  



NPHASE Solution Algorithm (Coupled Solver) 
Coupled Mass/Momentum – Segregated Enthalpy 
•  Solve for velocity, pressure, volume fractions 

–  Variables: (total variables is 5*Nfield) 
–  Velocity (3), pressure (1) and volume fraction (1) per field 
–  Density held constant à volume fraction equation  

–   Equations: 
•  Mass (continuity) (1 per field) 
•  u, v, w momentum (3 per field) 
•  Constraint – sum of volume fractions = 1 (1 total) 
•  Jump equations  – pk-p=0 (P equilibrium) (Nfield-1) 

•  Solve enthalpy, turbulence k-e, species concentration 
•  Update density as function of T   
•  Iterate until convergence 



NEPTUNE (NURETH10 paper) 
Pressured-based method with mass/momentum/
energy coupling  
•  predict velocities through partially linearized momentum 

equations (other variables are frozen and taken at 
previous time step) 

•  Mass/momentum/energy coupling 
–  Momentum equation using predicted velocity  (frozen convective/

diffusive parts and pressure and volume fractions treated implicitly) 
–  Coupled with mass and total enthalpy equation 
–  Iterative solver for pressure, volume fraction, total enthalpy, velocity, 

density (function of p and h). Enthalpy, thermodynamic properties, 
volume fractions prediction, pressure equation correction, update 
velocities, iterate until convergence (convergence is sum volume 
fractions=1) 

•  Update other variables (turbulence, interfacial areas) 
 



NEPTUNE CFD V1.0 
Interfacial momentum transfer terms 

•  Drag force 

•  Added mass (virtual mass) 

•  Lift force 

•  Turbulent dispersion 
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Nuclear Science and Engineering, 156, 281-324, 2007 



NEPTUNE CFD V1.0 
Interfacial heat and mass transfer terms 
•  Interfacial mass transfer 

•  Liquid to interface heat transfer 

–  Condensation  

–  Evaporation 

•  Interface to vapor heat transfer 
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NEPTUNE CFD V1.0 
wall heat transfer terms 
•  Wall heat transfer 

–  “single phase” like heat transfer through contact area Ac between the liquid and the duct wall 

 
with heat transfer coefficient 
 
–  Quenching effect 

–  Phase change heat flux  (bubbles nucleated on the wall surface) 
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NEPTUNE CFD V1.0 
interfacial area equation 
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Mass Conservation Algorithm 

•  1) estimate velocities – solve momentum equations 
implicitly using pn (predictor step) 

•  2) Find pressure correction  
•  3) Update pressure, density, velocity 

•  4) Solve continuity equation for volume fractions 
•  Enforce sum of volume fractions to unity, by ((1-a), renormalization or under-

relaxation  

•  5) iterate until convergence 
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Volume Conservation Algorithm 
(IPSA) 

•  1) first estimate of volume fractions by solving implicitly 
continuity equation using un  

•  2) first estimate of velocity by solving implicitly momentum 
equation 

•  3) Find pressure correction using                                     to 
form equation for  

•  4) Update pressure, volume fraction, velocity 
•  5) iterate until convergence 
•  6) if energy equation, solve for T, update density 
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